首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4265篇
  免费   364篇
  国内免费   506篇
  2024年   8篇
  2023年   115篇
  2022年   88篇
  2021年   128篇
  2020年   142篇
  2019年   173篇
  2018年   154篇
  2017年   133篇
  2016年   144篇
  2015年   152篇
  2014年   213篇
  2013年   352篇
  2012年   189篇
  2011年   213篇
  2010年   183篇
  2009年   206篇
  2008年   209篇
  2007年   205篇
  2006年   213篇
  2005年   217篇
  2004年   191篇
  2003年   184篇
  2002年   156篇
  2001年   154篇
  2000年   105篇
  1999年   97篇
  1998年   81篇
  1997年   69篇
  1996年   59篇
  1995年   51篇
  1994年   55篇
  1993年   39篇
  1992年   51篇
  1991年   32篇
  1990年   30篇
  1989年   30篇
  1988年   23篇
  1987年   19篇
  1986年   17篇
  1985年   35篇
  1984年   33篇
  1983年   24篇
  1982年   34篇
  1981年   29篇
  1980年   16篇
  1979年   20篇
  1978年   14篇
  1977年   15篇
  1976年   9篇
  1973年   12篇
排序方式: 共有5135条查询结果,搜索用时 15 毫秒
101.
大叶山楝根化学成分与细胞毒活性的研究   总被引:1,自引:1,他引:0  
为了解大叶山楝(Aphanamixis grandifolia Bl.)根中的抗肿瘤活性成分,利用各种色谱技术从其95% 乙醇提取物中分离得到9 个化合物,经波谱分析分别鉴定为:7-hydroxycadalene (1)、dregeana-1 (2)、4-oxopinoresinol (3)、4-ketopinoresinol (4)、6-deoxyjacareubin (5)、schleicheol 1 (6)、豆甾醇 (7)、β-谷甾醇 (8)和胡萝卜苷 (9).其中化合物1~6 为首次从山楝属植物中分离得到,并首次报道了化合物1的碳谱数据.生物活性测试结果表明,化合物15对慢性髓原白血病细胞K562 有生长抑制活性,化合物156 对人胃癌细胞SGC-7901 有生长抑制活性.  相似文献   
102.
为了解紫茎泽兰(Eupatorium adenophorum Spreng.)的化学成分,从其乙醇提取物中分离得到7 个化合物。通过波谱分析,分别鉴定为万寿菊苷(1)、7-O-(6-methoxykaempferol)-β-D-glucopranoside (2)、4'-甲基醚万寿菊苷(3)、3-O-(6-methoxykaempferol)-β-D-glucopranoside (4)、邻苯二甲酸二丁酯 (5)、邻苯二甲酸二(2-乙基)己酯 (6)、1,4-bis(2-benzoxazolyl)naphthalene (7)。其中化合物1~4 为首次从紫茎泽兰中分离得到。  相似文献   
103.
Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40–42) negatively affects the catalytic activity but also increases the angiogenic activity. 15N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin.  相似文献   
104.
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin‐deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole‐3‐pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole‐3‐acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin‐containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4‐biphenylboronic acid (BBo) and 4‐phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild‐type Arabidopsis seedlings. Co‐treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nm , respectively. In addition, PPBo did not interfere with the auxin response of auxin‐marker genes when it was co‐treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.  相似文献   
105.
The influence of long‐term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22‐year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array‐based analysis revealed that long‐term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer‐induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P‐limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions.  相似文献   
106.
Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller''s quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male''s long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males'' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual''s somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male''s condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male''s attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.  相似文献   
107.
红背山麻杆(Alchornea trewioides )为山麻杆属植物,作为传统的中药被用来减轻疾病和身体不适,但它的药效物质基础尚未完全清楚。为了全面掌握红背山麻杆药效物质基础,采用80%丙酮对其新鲜叶进行提取,并利用 MCI gel CHP 20P、Sephadex LH-20等色谱柱进行分离共得到9个化合物。这些化合物的结构经氢谱与碳谱比较分析鉴定为鞣花酸(1)、3-O-甲基没食子酸(2)、decarboxyellagic acid(3)、1-O-没食子酰基-β-D-葡萄糖(4)、1,6-二-O-没食子酰基-β-D-葡萄糖(5)、柯里拉京(6)、叶下珠鞣质 D(7)、furosonin(8)、老鹳草素(9)。其中化合物2~9均为首次从该属植物中分离得到。  相似文献   
108.
109.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   
110.
Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号